

ADVANCED GCE UNIT MATHEMATICS

4734/01

Probability & Statistics 3 **TUESDAY 5 JUNE 2007**

Afternoon

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [J/102/2706]

OCR is an exempt Charity

[Turn over

1 The continuous random variable X has probability density function given by

$$f(x) = \begin{cases} a & 0 \le x \le 1, \\ \frac{a}{x^2} & x > 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find the value of the constant a.

[4]

Two brands of car battery, 'Invincible' and 'Excelsior', have lifetimes which are normally distributed. Invincible batteries have a mean lifetime of 5 years with standard deviation 0.7 years. Excelsior batteries have a mean lifetime of 4.5 years with standard deviation 0.5 years. Random samples of 20 Invincible batteries and 25 Excelsior batteries are selected and the sample mean lifetimes are \overline{X}_I years and \overline{X}_E years respectively.

(i) State the distributions of
$$\overline{X}_I$$
 and \overline{X}_E . [2]

(ii) Calculate
$$P(\overline{X}_I - \overline{X}_E \ge 1)$$
. [5]

A nurse was asked to measure the blood pressure of 12 patients using an aneroid device. The nurse's readings were immediately checked using an accurate electronic device. The differences, x, given by x = (aneroid reading - electronic reading), in appropriate units, are shown below.

-1.3 4.7 -0.9 3.8 -1.5 4.0 -1.9 4.4 -0.8 5.5 -2.9 4.1
$$[\Sigma x = 17.2, \ \Sigma x^2 = 136.36.]$$

Stating any assumption you need to make, test, at the 10% significance level, whether readings with an aneroid device, on average, overestimate patients' blood pressure. [8]

- The students in a large university department take a trial examination some time before the proper examination. A random sample of 60 students took both examinations during a particular course. 42 students passed the trial examination, 36 passed the proper examination and 13 failed both examinations.
 - (i) Copy and complete the following contingency table.

[2]

		Proper Pass Fail Total			
		Pass	Fail	Total	
7 0. 1	Pass			42	
Trial	Fail		13		
	Total	36		60	

(ii) Carry out a test of independence at the $\frac{1}{2}$ % level of significance.

[7]

5 A music store sells both upright and grand pianos. Grand pianos are sold at random times and at a constant average weekly rate λ . The probability that in one week no grand pianos are sold is 0.45.

(i) Show that
$$\lambda = 0.80$$
, correct to 2 decimal places. [2]

Upright pianos are sold, independently, at random times and at a constant average weekly rate μ . During a period of 100 weeks the store sold 180 upright pianos.

- (ii) Calculate the probability that the total number of pianos sold in a randomly chosen week will exceed 3. [3]
- (iii) Calculate the probability that over a period of 3 weeks the store sells a total of 6 pianos during the first week and a total of 4 pianos during the next fortnight. [4]
- Random samples of 200 'Alpha' and 150 'Beta' vacuum cleaners were monitored for reliability. It was found that 62 Alpha and 35 Beta cleaners required repair during the guarantee period of one year. The proportions of all Alpha and Beta cleaners that require repair during the guarantee period are p_{α} and p_{β} respectively.
 - (i) Find a 95% confidence interval for p_{α} . [5]
 - (ii) Give a reason why, apart from rounding, the interval is approximate. [1]
 - (iii) Test, at the 5% significance level, whether p_{α} differs from p_{β} . [6]
- 7 The continuous random variable X has (cumulative) distribution function given by

$$F(x) = \begin{cases} 0 & x < 1, \\ 1 - \frac{1}{x^4} & x \ge 1. \end{cases}$$

- (i) Find the (cumulative) distribution function, G(y), of the random variable Y, where $Y = \frac{1}{X^2}$. [4]
- (ii) Hence show that the probability density function of Y is given by

$$g(y) = \begin{cases} 2y & 0 < y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$
 [2]

(iii) Find
$$E(\sqrt[3]{Y})$$
. [3]

[Question 8 is printed overleaf.]

8 The continuous random variable Y has a distribution with mean μ and variance 20. A random sample of 50 observations of Y is selected and these observations are summarised in the following grouped frequency table.

Values	y < 20	20 ≤ <i>y</i> < 25	$25 \leqslant y < 30$	<i>y</i> ≥ 30
Frequency	3	27	12	8

- (i) Assuming that $Y \sim N(25, 20)$, show that the expected frequency for the interval $20 \le y < 25$ is 18.41, correct to 2 decimal places, and obtain the remaining expected frequencies. [4]
- (ii) Test, at the 5% significance level, whether the distribution N(25, 20) fits the data. [5]
- (iii) Given that the sample mean is 24.91, find a 98% confidence interval for μ . [3]
- (iv) Does the outcome of the test in part (ii) affect the validity of the confidence interval found in part (iii)? Justify your answer. [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

1	$\int_0^1 a dx + \int_1^\infty \frac{a}{x^2} dx = 1$	M1		For sum of integrals =1
	$\left[ax\right]_0^1 + \left[-\frac{a}{x^3}\right]_1^\infty = 1$	A1		For second integral.
	$a + a = 1$ $a = \frac{1}{2}$	A1 A1	4	For second a Or from F(x) M1A1 then F(∞)=1 M1, $a=\frac{1}{2}$ A1
2	(i) $\overline{X}_I \square N(5, \frac{0.7^2}{20})$	B1		If no parameters allow in (ii)
	$\bar{X}_E \Box \text{N}(4.5, \frac{0.5^2}{25})$	B1	2	If 0.7/20, 0.5/25 then B1 for
	23			both, with means in (ii)
	(ii) Use $\overline{X}_I - \overline{X}_E \square N(0.5, \sigma^2)$ $\sigma^2 = 0.49/20 + 0.25/25$ 1- $\Phi([1-0.5]/\sigma)$ = 0.0036 or 0.0035	M1A1 B1 M1 A1	5	OR $\overline{X}_I - \overline{X}_E - 1 \square$ N(-0.5, σ^2) cao RH probability implied. If 0.7, 0.5 in σ^2 , M1A1B0M1A1 for 0.165
3	Assumes differences form a random sample from a normal distribution. H_0 : $\mu = 0$, H_1 : $\mu > 0$ $\overline{x} = 17.2/12$; $s^2 = 10.155$ AEF	B1 B1B1	B1	Other letters if defined; or in words Or (12/11)(136.36/12-(17.2/12) ²)aef
	EITHER: $t = \frac{\overline{x}}{\sqrt{s^2/12}}$ (+ or -)	M1		With 12 or 9.309/11
	$\sqrt{s^2/12}$ =1.558 1.363 seen 1.558 > 1.363, so reject H ₀ and accept that there	A1 B1		Must be positive. Accept 1.56 Allow CV of 1.372 or 1.356 evidence
	that the readings from the aneroid device overestimate blood pressure on average	В1√		Explicit comparison of CV(not - with +) and conclusion in context.
	OR: For critical region or critical value of \overline{x} 1.363 $\sqrt{(s^2/12)}$ Giving 1.25(3)	M1B1 A1		B1 for correct <i>t</i>
	Compare 1.43(3) with 1.25(3) Conclusion in context	В1√	8	

1	(i) Proper			
	P F			
	P 31 11 42	B1		Two correct
	Trial F 5 13 18	B1		Others correct
	36 24 60	Di	2	Others correct
	(ii) (H ₀ : Trial results and Proper results			
	are independent.)			
	E-values: 25.2 16.8	M1		One correct. Ft marginals in (i)
	10.8 7.2	A1		All correct
	$\chi^2 = 5.3^2 (25.2^{-1} + 10.8^{-1} + 16.8^{-1} + 7.2^{-1})$	M1		Allow two errors
	, and the second	A1		With Yates' correction
	= 9.289	A1		art 9.29
	Compare correctly with 7.8794	M1		Or 7.88
	There is evidence that results are not independent.	A1 √	7	Ft χ^2_{calc} .
	(i) $e^{-\mu} = 0.45$	M1		
	$\mu_G = 0.799 \approx 0.80 \text{ AG}$	A1	2	0.799 or 0.798 or better seen
	(ii) $\mu_U \approx 1.8$	B1		
	Total, $T \sim Po(2.6)$	M1		May be implied by answer 0.264
	P(>3) = 0.264	A1	3	From table or otherwise
	(iii) e ^{-2.6} 2.6 ⁶ /6!	B1		Or 0.318 from table
	$e^{-5.2}5.2^4/4!$	B1		
	Multiply two probabilities	M1		
	Answers rounding to 0.0053 or 0.0054	A1	4	

4734	Mark Scheme	June 2007
4/34	wark scheme	June Zuu/

6	(i) $\hat{p} = 62/200 = 0.31$	B1		aef
	Use $\hat{p}_{\alpha} \pm z \sqrt{\frac{\hat{p}_{\alpha}(1-\hat{p}_{\alpha})}{200}}$	M1		With 200 or 199
	z=1.96	B1		Seen
	Correct variance estimate	A1√		ft \hat{p}
	(0.2459,0.3741)	A1	5	art (0.246,0.374)
	(ii)EITHER: Sample proportion has an approximate normal distribution OR: Variance is an estimate	B1	1	Not \hat{p} is an estimate, unless
	OK. Variance is an estimate	ы	1	variance mentioned
	(iii) H_0 : $p_\alpha = p_\beta$, $H_{1:}p_\alpha \neq p_\beta$			
	$\hat{p} = (62+35)/(200+150)$	B1		aef
	EITHER: $z = (\pm) \frac{62/200 - 35/150}{\sqrt{\hat{p}\hat{q}(200^{-1} + 150^{-1})}}$	M1		s^2 with, \hat{p} , 200, 150 (or 199, 149)
	·	B 1√		Evidence of correct variance estimate. Ft \hat{p}
	=1.586	A1		Rounding to 1.58 or 1.59
	(-1.96 <) 1.586 < 1.96	M1		Correct comparison with ± 1.96
	Do not reject H ₀ - there is insufficient			
	evidence of a difference in proportions.	A1		SR: If variance $p_1q_1/n_1+p_2q_2/n_2$ used then: B0M1B0A1(for z=1.61 or 1.62)M1A1 Max 4/6.
	OR: $p_{s\alpha} - p_{s\beta} = zs$	M1		
	$s = \sqrt{(0.277 \times 0.723(200^{-1} + 150^{-1}))}$	В1√		Ft \hat{p}
	CV of $p_{s\alpha} - p_{s\beta} = 0.0948$ or 0.095	A1		
	Compare $p_{s\alpha} - p_{s\beta} = 0.0767$ with their 0.0948 Do not reject H ₀ and accept that there is insufficient evidence of a difference in	M1		
	proportions	A1		Conditional on z=1.96
			6	

7 (i) $G(y) = P(Y \le y)$ $= P(X^2 \ge 1/y) \text{ [or } P(X > 1/\sqrt{y}) \text{]}$ $= 1 - F(1/\sqrt{y})$ $= \begin{cases} 0 & y \le 0, \\ y^2 & 0 \le y \le 1, \\ (1 & y > 1.) \end{cases}$	M1 A1 A1		May be implied by following line Accept strict inequalities
(1 y>1.)	A1	4	Or $F(x)=P(X \le x) = P(Y \ge 1/x^2)$ M1 =1 - $P(Y < 1/x^2)$ A1 =1- $G(y)$;etc A1 A1
(ii) Differentiate their $G(y)$ to obtain $g(y)=2y$ for $0 < y \le 1$ AG obtained	M1	A1	2 Only from G correctly
(iii) $\int_0^1 2y(\sqrt[3]{y} dy$	M1		Unsimplified, but with limits
$=[6y^{7/3}/7]$	B1		OR: Find f(x), $\int_{1}^{\infty} x^{-2/3} f(x) dx$ M1
$=$ $^{6}/_{7}$	A1	3	= $[4x^{-14/3}/(14/3)]$; $^{6}/_{7}$ B1A1 OR: Find H(z), Z= $Y^{1/3}$
8 (i) $P(20 \le y < 25) = \Phi(0) - \Phi(-5/\sqrt{20})$ Multiply by 50 to give 18.41 AG 18.41 for $25 \le y < 30$ and 6.59 for $y < 20$, $y \ge 30$	M1 A1 A1 A1	4	
(ii) H ₀ : N(25,20) fits data	B1		OR $Y \sim N(25,20)$
$\chi^{2} = 3.59^{2}/6.59 + 8.59^{2}/18.41 + 6.41^{2}/18.41 + 1.41^{2}/6.59$ $= 8.497$	M1√ A1		ft values from (i) art 8.5
8.497 > 7.815 Accept that N(25,20) is not a good fit	M1 A1	5	
(iii) Use $24.91 \pm z\sqrt{(20/50)}$		M1	With $\sqrt{(20/50)}$
z = 2.326 (23.44,26.38)	B1 A1	3	art (23.4,26.4) Must be interval
(iv) No- Sample size large enough to apply CLT	B1		Refer to large sample size
Sample mean will be (approximately) normally distributed whatever the distribution of <i>Y</i>	B1	2	Refer to normality of sample mean